Cube Root formula of Perfect Cubes of 1 to 100 

0
639

Cubes 1 to 100

Cubes 1 to 100 is the list of cubes of all the numbers from 1 to 100. The value of cubes from 1 to 100 ranges from 1 to 1000000. Memorizing these values will help students to simplify the time-consuming equations quickly. The cube 1 to 100 in the exponential form is expressed as (x)3.

Cube 1 to 100:

  • Exponent form: (x)3
  • Highest Value: 1003 = 1000000
  • Lowest Value: 13 = 1

Cube Root List (1 to 100)

The students are advised to memorize these cubes 1 to 100 values thoroughly for faster math calculations.

Cube 1 to 100 – Even Numbers

The table below shows the values of cubes 1 to 100 for even numbers.

23 = 843 = 6463 = 21683 = 512103 = 1000
123 = 1728143 = 2744163 = 4096183 = 5832203 = 8000
223 = 10648243 = 13824263 = 17576283 = 21952303 = 27000
323 = 32768343 = 39304363 = 46656383 = 54872403 = 64000
423 = 74088443 = 85184463 = 97336483 = 110592503 = 125000
523 = 140608543 = 157464563 = 175616583 = 195112603 = 216000
623 = 238328643 = 262144663 = 287496683 = 314432703 = 343000
723 = 373248743 = 405224763 = 438976783 = 474552803 = 512000
823 = 551368843 = 592704863 = 636056883 = 681472903 = 729000
923 = 778688943 = 830584963 = 884736983 = 9411921003 = 1000000

Cube 1 to 100 – Odd Numbers

The table below shows the values of cubes from 1 to 100 for odd numbers.

13 = 133 = 2753 = 12573 = 34393 = 729
113 = 1331133 = 2197153 = 3375173 = 4913193 = 6859
213 = 9261233 = 12167253 = 15625273 = 19683293 = 24389
313 = 29791333 = 35937353 = 42875373 = 50653393 = 59319
413 = 68921433 = 79507453 = 91125473 = 103823493 = 117649
513 = 132651533 = 148877553 = 166375573 = 185193593 = 205379
613 = 226981633 = 250047653 = 274625673 = 300763693 = 328509
713 = 357911733 = 389017753 = 421875773 = 456533793 = 493039
813 = 531441833 = 571787853 = 614125873 = 658503893 = 704969
913 = 753571933 = 804357953 = 857375973 = 912673993 = 970299

How to Calculate the Values of Cube 1 to 100?

To calculate cubes from 1 to 100, we can use the following method:

Multiplication by itself:

In this method, the number is multiplied three times (x × x × x) and the resultant product gives us the cube of that number. For example, the cube of 8 = 8 × 8 × 8 = 512. Here, the resultant product “512” gives us the cube of the number “8”. This method works well for smaller numbers.

LEAVE A REPLY

Please enter your comment!
Please enter your name here